大型低温重力波望遠鏡用低温設備の開発(6)

- KAGRA 用クライオスタット冷却性能試験 -

Development of Cryogenic System for Large-scale Cryogenic Gravitational wave Telescope (6)

<u>東谷 千比呂</u> (東大); 木村 誠宏, 鈴木 敏一, 小池 重明, 久米 達哉 (KEK);

榊原 裕介, 山元 一広, 陳たん, 内山 隆, 大橋 正健 (東大)

Chihiro Tokoku (ICRR); Nobuhiro Kimura, Toshikazu Suzuki, Shigeaki Koike, Tatsuya Kume (KEK);

Yusuke Sakakibara, Chen Dan, Takashi Uchiyama, Masatake Ohashi (ICRR)

E-mail: tokoku@icrr.u-tokyo.ac.jp

1. はじめに

大型低温重力波望遠鏡(KAGRA)は、干渉計の要である 鏡を20Kまで冷やすことで熱雑音を低減して目標感度の達 成を目指す。クライオスタット1台につき低振動冷凍機ユニット 4台を使用し、輻射と伝導で鏡を冷やすとともに、伝導経路を 伝わってくる冷凍機や地面からの振動を地盤振動以下に低 減する。本講演では、2013年春に実施されたKAGRA クライ オスタットの冷却性能試験について報告する。なお、本実験 は(株)東芝の京浜事業所で行われた。

2. クライオスタットの仕様

クライオスタットの概要図をFig.1に示す。高さ4.3m、直径 2.6 m、総重量約 11000 kg で、2 重シールドの中に鏡を懸架 する構造となっている。インナーシールドは主に輻射による鏡 の初期冷却促進に寄与するほか、干渉計からの散乱光で生 じる熱を吸収する。インナーシールド内壁にはダイアモンド・ラ イク・カーボン(DLC)加工を施した板を取り付けている。アウタ ーシールドはインナーシールドの輻射シールドとして機能す る。シールドはアルミニウム 6000 番台(構造材)および 1000 番台(壁材)で構成され、重量はインナーシールドが約 460 kg、 アウターシールドが約 590 kg である。これらのシールドはベス ペル®製の支持材により真空容器内壁から支持されている。 クライオスタットには4台の低振動冷凍機ユニット[1]が接続 され、2段式冷凍機の第2段コールドヘッドに接続された計4 系統の伝導冷却路のうち2系統でインナーシールドを、熱的 に独立した別の2系統で鏡を冷やす。また第1段コールドへ ッドに接続された計 4 系統の伝導冷却路を使ってアウターシ ールドを冷やす。冷却能力の設計値について、運転温度はイ ンナーシールドが10K以下、アウターシールドが90K以下、 また鏡へのヒートリンク接続部に熱負荷各 2 W を与えた時そ の接続部において8K以下、である。この運転温度における クライオスタット内の目標真空度は 10⁻⁷ Pa 以下である。

3. 試験概要

冷却性能試験では、クライオスタット内各所に設置した温 度計により各所の最低到達温度を測定し、また散乱光による 熱負荷に相当する熱をインナーシールドおよび鏡のヒートリン ク接続部へ与えて温度応答を調べた。このほか、インナーシ ールド内壁からの輻射による鏡の初期冷却効果実証試験[2] や、運転温度におけるインナーシールドの振動測定試験を行 った。

4. 試験結果

クライオスタットの初期冷却には2週間を要した。Fig. 2に 各部の典型的な冷却曲線を示す。インナーシールドの温度 降下は事前の熱設計シミュレーションによる予想とほぼ一致し た。またヒータによる熱負荷試験で得られた温度応答曲線 Fig. 3 は実際の運転時に熱流入量を見積もる指標にもなる。

Fig. 2 Typical cooling curves of the cryostat

Fig. 3 Typical temperature responses to the input heat load at the mirror cooling line and 8K shield

5. 結論

KAGRA クライオスタット 4 台について製造が完了し、冷却 性能試験が実施され、4 台とも設計値をほぼ満たすことが確 認された。

参考文献

- C. Tokoku, et al.: Abstracts of CSSJ Conference, Vol. 86 (2012) p.232
- Y. Sakakibara, et al.: Proceedings of CEC/ICMC 2013 Conference, (2013) in press.

⁻ Results of Performance Test of the KAGRA Cryostats -